Southwest Jiaotong University School of Mathematics


ag网站亚游登录  >  学术科研  >  信息与计算科学系  >  正文


ag网站亚游登录:   作者:代数编码及其应用团队     日期:2019-05-09 19:27:33   点击数:  

法国巴黎第八大学Sihem Mesnager学术报告



报告地点: X7503


Title: On good polynomials over finite fields for optimal locally recoverable codes

报告摘要:A locally recoverable (LRC) code is a code that enables a simple recovery of an erased symbol by accessing only a small number of other symbols. LRC codes currently form one of the rapidly developing topics in coding theory because of their applications in distributed and cloud storage systems. In 2014, Tamo and Barg have presented in a very remarkable paper a family of LRC codes that attain the maximum possible (minimum) distance (given code length, cardinality, and locality). The key ingredient for constructing such optimal linear LRC codes is the so-called r-good polynomials, where r is equal to the locality of the LRC code. In this talk, we review and discuss new good polynomials over finite fields for constructing optimal LRC codes.

报告人介绍:Sihem Mesnager教授本科和博士均毕业于法国巴黎六大,现为法国巴黎八大和巴黎高科国立高等电信学校双聘教授,其主要研究领域为离散数学、密码函数、编码理论、计算代数几何。在具有特殊密码学性质的布尔函数构造、良好线性码的构造等方面做出多项创新性成果,在《IEEE Transactions on Information Theory》、《Designs, Codes and Cryptography》、“ISIST”等国际顶级期刊和会议发表论文70多篇,并出版了密码函数、编码方面的两本专著。


XML 地图 | Sitemap 地图